1,362 research outputs found

    Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages

    Get PDF
    Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever. Successful host cell infection requires the Coxiella type IVB secretion system (T4BSS), which translocates bacterial effector proteins across the vacuole membrane into the host cytoplasm, where they manipulate a variety of cell processes. To identify host cell targets of Coxiella T4BSS effector proteins, we determined the transcriptome of murine alveolar macrophages infected with a Coxiella T4BSS effector mutant. We identified a set of inflammatory genes that are significantly upregulated in T4BSS mutant-infected cells compared to mock-infected cells or cells infected with wild-type (WT) bacteria, suggesting that Coxiella T4BSS effector proteins downregulate the expression of these genes. In addition, the interleukin-17 (IL-17) signaling pathway was identified as one of the top pathways affected by the bacteria. While previous studies demonstrated that IL-17 plays a protective role against several pathogens, the role of IL-17 during Coxiella infection is unknown. We found that IL-17 kills intracellular Coxiella in a dose-dependent manner, with the T4BSS mutant exhibiting significantly more sensitivity to IL-17 than WT bacteria. In addition, quantitative PCR confirmed the increased expression of IL-17 downstream signaling genes in T4BSS mutant-infected cells compared to WT- or mock-infected cells, including the proinflammatory cytokine genes Il1a, Il1b, and Tnfa, the chemokine genes Cxcl2 and Ccl5, and the antimicrobial protein gene Lcn2 We further confirmed that the Coxiella T4BSS downregulates macrophage CXCL2/macrophage inflammatory protein 2 and CCL5/RANTES protein levels following IL-17 stimulation. Together, these data suggest that Coxiella downregulates IL-17 signaling in a T4BSS-dependent manner in order to escape the macrophage immune response

    Solvability of singular integral equations with rotations and degenerate kernels in the vanishing coefficient case

    Get PDF
    By means of Riemann boundary value problems and of certain convenient systems of linear algebraic equations, this paper deals with the solvability of a class of singular integral equations with rotations and degenerate kernel within the case of a coefficient vanishing on the unit circle. All the possibilities about the index of the coefficients in the corresponding equations are considered and described in detail, and explicit formulas for their solutions are obtained. An example of application of the method is shown at the end of the last section

    Prevalence and risks of fascioliasis among adult cohorts in Binh Dinh and Quang Ngai provinces-central Viet Nam

    Get PDF
    Fascioliasis (liver fluke disease) has raised significant public health concerns in the 15 regional provinces of Central Vietnam, accounting for 93% of the national incidence of the disease. No control measures to date have proven effective. Annual reports show increasing incidence of fascioliasis but they are incomplete. This cross-sectional study was conducted to identify the prevalence of fascioliasis and to describe its associated risks in three communes in Central Vietnam. 500 human blood samples were examined (ELISA); and a survey of knowledge, attitude and practice (KAP) was conducted for 600 randomly selected adults per commune. The findings suggest that overall seroprevalence was 7.75% (95% CI 6.54-9.16%). Among the infected cases, people aged from 18-59 years (85.6%) and farmers (68.0%) accounted for majority of infection. Less than half of participants in all three communes (24.6% - 46.0%) knew the causes of fascioliasis; and considerable proportions ate improperly boiled vegetables (28.2-33.8%), drank unboiled water (23.5-42.5%), and did not own a household toilet (14.2-20.5%). Relatively high prevalence and risks of fascioliasis were found in Central Vietnam, supporting the need for comprehensive intervention measures including selective treatment, health education, and multisectoral approaches to reduce the morbidity associated with fascioliasis and thus improve the health status of the people

    Effect of charged line defects on conductivity in graphene: Numerical Kubo and analytical Boltzmann approaches

    Get PDF
    Charge carrier transport in single-layer graphene with one-dimensional charged defects is studied theoretically. Extended charged defects, considered an important factor for mobility degradation in chemically-vapor-deposited graphene, are described by a self-consistent Thomas-Fermi potential. A numerical study of electronic transport is performed by means of a time-dependent real-space Kubo approach in honeycomb lattices containing millions of carbon atoms, capturing the linear response of realistic size systems in the highly disordered regime. Our numerical calculations are complemented with a kinetic transport theory describing charge transport in the weak scattering limit. The semiclassical transport lifetimes are obtained by computing scattered amplitudes within the second Born approximation. The transport electron-hole asymmetry found in the semiclassical approach is consistent with the Kubo calculations. In the strong scattering regime, the conductivity is found to be a sublinear function of electronic density and weakly dependent on the Thomas-Fermi screening wavelength. We attribute this atypical behavior to the extended nature of one-dimensional charged defects. Our results are consistent with recent experimental reports.Comment: 15 pages, 9 figure

    The fluctuation energy balance in non-suspended fluid-mediated particle transport

    Full text link
    Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small

    Magnetic and Magnetotransport Properties of La0.7ca0.3mn1-x(zn,cu)xo3

    Full text link
    Magnetic and magnetotransport properties of two perovskite manganite samples of La0.7Ca0.3Mn0.9Zn0.1O3 and La0.7Ca0.3Mn0.95Cu0.05O3 prepared by conventional solid-state reaction have been studied in detail. Experimental results revealed that the temperature dependences of magnetization and resistance varied strongly around the phase-transition temperature. Maximum magnetoresistance (MR) values of La0.7Ca0.3Mn0.9Zn0.1O3 and La0.7Ca0.3Mn0.95Cu0.05O3 under an applied field of 400 Oe were about 21.4 % and 11.0 %, respectively. The maximum magnetic-entropy change (ΔSM) was 2.73 J/kg.K for La0.7Ca0.3Mn0.9Zn0.1O3, and 3.34 J/kg.K for La0.7Ca0.3Mn0.95Cu0.05O3 when the applied field was 45 kOe. Both the MR and ΔSM values obtained from two samples were smaller than those of the parent compound La0.7Ca0.3MnO3. This was due to the change in the Mn3+/Mn4+ ratio caused by Zn and Cu dopants, which led to a change in the type of the ferromagneticparamagnetic phase transition
    corecore